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THE KOENIG FORCE IN A COMPRESSIBLE FLUID

A. A. Doinikov and S. T. Zavtrak UDC 534:532.529.6

In publications referring to the Koenig force (see, for example [1-3]), it is assumed
that the acoustic wavelength is much larger than the separation between the dispersed parti-
cles. Such an assumption allows fluid compressibility to be neglected, but it is wvalid only
for low frequency waves. On the other hand, in practice, for instance in ultrasound tech-
nology, radiation of quite high frequency (10%-10° Hz [4]) must be considered. The wave-
length of such radiation can be comparable to or even smaller than the separation between
particles while remaining many times larger than their dimension. Obviously the neglect of
fluid compressibility is then unjustified. The question arises: how does the structure of
the Koenig force change when fluid compressibility is taken into account? This paper gives
an answer to the question.

Thus we need to compute the force of radiative interaction (the Koenig force) of two
rigid spherical particles whose centers execute small oscillations of circular frequency w
when the separation ¢ between the particles is comparable to the acoustic wavelength A =

2wcw”t. The speed of sound in the fluid is c, and the particles have radii R; and R,.

We examine the issue of small parameters. First, we assume that two standard condi-
tions are satisfied: the fluid vibration is potential, that is, v = v¢ (¢ is the potential
of the fluid velocity v); and |w|/c « 1. The latter condition is indicative of the small
amplitude of the wave field. Second, in the solution to the analogous problem for an in-
compressible fluid, two other small parameters are used: kR; , « 1 and k& « 1 (k = w/c is
the wavenumber), with kR; » <« k&. Their small magnitude and the relation between them fol-
lows from the assumption R; , « & « A. Relaxing the requirement & <« A means that only
one small parameter, kR;,,, remains in which to carry out all expansions.

It is well known that radiation forces, including the Koenig force, are quadratic in
the field. Considering this, the problem can be formulated thus: we must find the leading
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terms in the expansion of the Koenig force in the parameter le,z, in the quadratic field
approximation for arbitrary dependences A and £.

The radiation force ¥; acting on the j-th particle (j =1, 2) will be computed by the
formula obtained in [3]:

E=m<hmw—wwwm—vam§>- (1)

8

Here p, is the density of the undisturbed fluid, de is the surface element of the j-th
particle at rest, and my is the unit outward normal vector to this surface. The angular
brackets denote time averaging. Since all terms in the integrand of (1) are quadratic in
the field, ¢ and v can be reasonably calculated from an approximation that is linear in the
field. Consequently, we can use the linearized equations of fluid motion and can restrict
satisfaction of the boundary conditions for w at the surface of the particle at rest. Thus
we must solve the boundary value problem

Mg + kg = 0; )
BV = 1n;-W; for p; = anjv j= 1, 2, <3)

where Pi =r—1r;; T is the radius vector of a point in the fluid; r; is the radius vector
of the equilibrium position of the center of the j-th particle; w; = Re{l; exp(~iwt)} is the
oscillation rate of the j-th particle; and U; is the complex amplitude. e write ¢ in the
form of a sum of two dipole potentials: ¢ = ¢; + ¢,. Here

¢ = Re {ajuniuhit (ko;) exp (— iwt)) (0; = | 03 ]); (4)
h(l)l(kpj) is the spherical Hankel function; a summation is carried out over the index a.
It is evident that ¢ satisfies (2). Correspondingly, for the fluid velocity w we obtain

v =wv; + v,, where vy = V'¢j. We find the unknown coefficients ajq from the boundary con-
ditions (3) to an accuracy of the leading terms in kRy 2t ajq = —ik2R3jUja/2.

Let us now switch to the calculation of the radiation forces. Considering the sym-
metry of the problem, it is sufficient to find the force F, acting on the first particle.
The force F, is then easily found by reversing the notation for the first and second parti-

cles in the expression for ¥,. Setting j = 1 in (1) and substituting the expressions for ¢
and v into it, we have _

- Fi=np, <.S. [nl (US - k2¢§)/2 — V¥ (Vz'nx)] d81> + (5)
+ 0 <5‘ [nl (Ui — kg(P%)/Z — vy (v, -nl)] ds1> +
0 <S. [my (Vi ¥y — B2Q05) — vy (Vormy) — v, (v;-my)] d81>.

The integrand in the first term of (5) has no singularity in the volume bounded by the sur-
face s,. By transforming the surface integral to a volume integral, it is easy to confirm
that the first term is identically equal to zero. Substituting ¢, and w, from (4) into the

second term, we verify that it is zero as well. Expanding ¢, and v, in a series about the
point ¢ = ry:

P2 A Gafry) + O1V1 0alr); (6)
Vo & Vyry) =+ (01 V1) Va(ry). (7)

We substitute (6) and (7) and also ¢; and v, into the third term in (5). Omitting the
straightforward intermediate calculations, we write the final formula

Fi=— anoRg AW V) vy (). (8)

Together with (4), formula (8) solves the problem we have posed. We introduce the final
expressions which hold for both ¥, and ¥,:

Fj = Fjl + sz + Fj; + Fj4:
where C

F;; = BIm {exp [— (— 1) ikl (m-UY) (m-U,) m} (k)~1; (9)
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Fjz = (— 1)/ BRe{exp [— (— 1) ikl] [(m-U,) U} + (10)
+ (m-U;) U, + (U]-Up) m — 6 (m-U}) m- U,)m]} (k1)-3;

?

Fjs = 3B Im {exp [— (— 1)7 ik} [(m- U)) UF + (1)
+ (m-UT) U + (U3-Up) m — 5 (m-U}) (m-Uy) m]] (k1) %
F;, = — 3(— 1) B Re {exp[— (— 1)i ikl} [(m-U,) UT + (12)

+ (m-U}) U, + (U}-U,) m — 5 (m-U7) (m- Uy) m]} (k1=
(B = nk*R3R3p,/2, m = I, 1 =1, —1,).

Let us compare these formulas with those from previous works. In [1, 2], a formula
for the Koenig force in an incompressible fluid was given under the condition that both
particles oscillate along the line joining their centers. In [3], this formula was gen-
eralized to the case of arbitrary direction of particle oscillation. This case is signif-
icantly more complex. Taking fluid compressibility into account shows that the structure
of the Koenig force is of an even more complex character. First, there arise long-range
terms in (9)-(11) for the Koenig force, which, unlike the '"classical" term (12) are in-
versely proportional not to 2%, but to £, £? and &3, respectively. In the limit of an in-
compressible fluid (k% << 1), it is possible to be restricted to the last term of (12) alone,
which coincides with the results obtained in [1-3]. Second, the Koenig force begins to de-
pend on the reradiation phase k&. As a consequence of this, it can approach zero and
change sign for fixed 2. Third, ¥, + ¥, # 0. This is related to the fact that in an in-
compressible fluid, part of the momentum of the system is carried away to infinity [5].

In conclusion, we note that the change in the structure of the Koenig force has, in
some sense, a universal character. Similar changes are observed for the Berkness force
[5, 6]. The same effect also occurs in problems of radiative interaction in an electromag-
netic wave field of electric charges [7] and magnetic moments [8].
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